Pendular energy transduction within the step in human walking.
نویسندگان
چکیده
During walking, the centre of mass of the body moves like that of a 'square wheel': with each step cycle, some of its kinetic energy, E(k), is converted into gravitational potential energy, E(p), and then back into kinetic energy. To move the centre of mass, the locomotory muscles must supply only the power required to overcome the losses occurring during this energy transduction. African women carry loads of up to 20% of their body weight on the head without increasing their energy expenditure. This occurs as a result of an unexplained, more effective energy transduction between E(k) and E(p) than that of Europeans. In this study we measured the value of the E(k) to E(p) transduction at each instant in time during the step in African women and European subjects during level walking at 3.5-5.5 km h(-1), both unloaded and carrying loads spanning 20-30% of their body weight. A simulation of the changes in E(k) and E(p) during the step by sinusoidal curves was used for comparison. It was found that loading improves the transduction of E(p) to E(k) during the descent of the centre of mass. The improvement is not significant in European subjects, whereas it is highly significant in African women.
منابع مشابه
Pendular energy transduction within the step during human walking on slopes at different speeds
When ascending (descending) a slope, positive (negative) work must be performed to overcome changes in gravitational potential energy at the center of body mass (COM). This modifies the pendulum-like behavior of walking. The aim of this study is to analyze how energy exchange and mechanical work done vary within a step across slopes and speeds. Ten subjects walked on an instrumented treadmill a...
متن کاملThe metabolic and mechanical costs of step time asymmetry in walking.
Animals use both pendular and elastic mechanisms to minimize energy expenditure during terrestrial locomotion. Elastic gaits can be either bilaterally symmetric (e.g. run and trot) or asymmetric (e.g. skip, canter and gallop), yet only symmetric pendular gaits (e.g. walk) are observed in nature. Does minimizing metabolic and mechanical power constrain pendular gaits to temporal symmetry? We mea...
متن کاملMechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking.
In the single stance phase of walking, center of mass motion resembles that of an inverted pendulum. Theoretically, mechanical work is not necessary for producing the pendular motion, but work is needed to redirect the center of mass velocity from one pendular arc to the next during the transition between steps. A collision model predicts a rate of negative work proportional to the fourth power...
متن کاملExternal Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy
PURPOSE Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP). Improving their walking is an essential objective of treatment, and the use of a treadmill for gait analysis and training could offer several advantages in adolescents with CP. However, there is a controversy regarding the similarity between treadmill and overground walking both ...
متن کاملEvaluation of optimal step length in a seven-link model with margin of stability method
In a walking cycle design, maximizing the upright balance should be considered in addition to the kinematic constraints, energy consumption rate must be considered. The purpose of this study is to find the optimal step length obtained for each person according to the physical features. In this research, in order to minimize energy consumption rate by considering maximum balance two cost functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 205 Pt 21 شماره
صفحات -
تاریخ انتشار 2002